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ON THE LARGEST MULTILINEAR SINGULAR VALUES
OF HIGHER-ORDER TENSORS*
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Abstract. Let o, denote the largest mode-n multilinear singular value of an I; X --- X Iy
tensor 7. We prove that of + -4+ 02_ + 02 1+ - +0%3 < (N=2[T|?+03, n=1,...,N,
where || - || denotes the Frobenius norm. We also show that at least for third-order cubic tensors

the inverse problem always has a solution. Namely, for each o1, o2, and o3 that satisfy 0'% + 0'% <

ITN? + 03, 02 + 03 <||ITII?> + 03, 03+ 02 <|T|?+ o?, and the trivial inequalities o1 > %HTH,
1 1 . s :

o2 2 o |7, o3 > I [|T|, there always exists an n X n X n tensor whose largest multilinear singular

values are equal to 01, o2, and 3. We also show that if the equality 0% + 03 = ||T||? + 02 holds, then
T is necessarily equal to a sum of multilinear rank-(L1,1, L1) and multilinear rank-(1, L2, L2) tensors
and we give a complete description of all its multilinear singular values. We establish a connection
with honeycombs and eigenvalues of the sum of two Hermitian matrices. This seems to give at
least a partial explanation of why results on the joint distribution of multilinear singular values are
scarce.
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1. Introduction. Throughout the paper || - || denotes the Frobenius norm of a
vector, matrix, or tensor and the superscripts 7, ¥, and * denote transpose, hermi-
tian transpose, and conjugation, respectively. We also use the “empty sum/product”
convention, i.e., if m > n, then > (-) =0 and [ (-) = 1.

Let T € Clv<*In A mode-n fiber of T is a column vector obtained by fixing
indices i1,...,9n—1,%n41,---,in. A matrix T(,) € ClnxhiIn—alni1IN formed by
all mode-n fibers is called a mode-n matriz unfolding (aka flattening or matriciza-
tion) of 7. For notational convenience we assume that the columns of T, are or-
dered such that

N k—1

(1) the [in, 1+ Y (ix — 1) [ ] I |th entry of T(ny = the (ix,...,in)th entry of 7.
k=1 =1
k#n l#n
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For instance, if N = 3, i.e., T € Cl1*2XIs then (1) implies that

Ty = [Ty ... Tp,) € Chxkl
Ty = [TT ... TL] e Cl2xils,
T(3) = [vec(Ty) ...Vec(TIS)}T c CI;;XIIIQ’

where Ty, ..., Ty, € CIt*!2 denote the frontal slices of 7.
Tensor T € CI>¥*IN is all-orthogonal if the matrices T(l)Tg), .. "T(N)TZV)
are diagonal. The multiLinear (ML) singular value decomposition (SVD) (aka higher-

order SVD) is a factorization of 7 into the product of an all-orthogonal tensor S €

Ch>xIN and N unitary matrices Uy € Clvxhv [ Uy € CIvxin,
(2) TZS'lUl'QUQ...-NUN,
where “-;,” denotes the n-mode product of § and U,,. Rather than giving the formal

definition of “,,”, for which we refer the reader to [2, 3, 12], we present N equivalent
matricized versions of (2):

(3) T =UpSu(Un® - @U,1 10U, ®---@U)", n=1,...,N,

where “®” denotes the Kronecker product. For N = 2, i.e., for T = T; € Ch*/z,
the MLSVD reduces, up to trivial indeterminacies, to the classical SVD of a matrix,
T =T = USVH where U=U,,S = Sy, and V = U3 ® 1. It is known [3] that
MLSVD always exists and that its uniqueness properties are similar to those of the
matrix SVD.

The MLSVD has many applications in signal processing, data analysis, and ma-
chine learning (see, for instance, the overview papers [12, subsection 4.4], [16]). Here
we just mention that as principal component analysis (PCA) can be done by SVD of
a data matrix, MLPCA can be done by MLSVD of a data tensor [4, 14, 17].

The singular values of T (,), are called the mode-n singular values of T. Since
S(l)Sg), e S(N)ng) are diagonal, it follows from (3) that the ML singular values
of T coincide with the ML singular values of S, which are just the Frobenius norms
of the rows of S(y),...,S(n). Throughout the paper,

on denotes the largest singular value of T',,.

In the matrix case, i.e., for N = 2, the description of MLSVD is trivial. Indeed, the
singular values of T(;y = Ty and T(y) = TT coincide and T3 = vec(T1)T has a
single singular value ||7|. Thus, the singular values of T(;) completely define the
singular values of T (3) and T(3). In particular, the set of triplets (01,02, 03) coincides
with the set {(z,7,y) : y > x > 0} C R® whose Lebesgue measure is zero. The
situation for tensors is much more complicated. It is clear that in the general case
N > 2, the sets of the mode-1, ..., mode-N singular values are not independent either.
The study of topological properties of the set of ML singular values of real tensors
has been initiated only recently in [7] and [6]. In particular, it has been shown in [7]
and [6] that, as in the matrix case, some configurations of ML singular values are not
possible but, nevertheless, at least for n X - - - x n tensors the set of ML singular values
has a positive Lebesgue measure.

In this paper we study possible configurations for the largest ML singular values,
ie., for oq,...,0n. Our results are valid for real and complex tensors. The following
theorem presents simple necessary conditions for o1, o3, and o3 to be the largest ML
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singular values of a third-order tensor. For instance, it implies that a norm-1 tensor
whose largest ML singular values are equal to 0.9, 0.9, and 0.7 does not exist.

THEOREM 1.1. Let 01, 09, and o3 denote the largest ML singular values of an
I; x Iy x I3 tensor T. Then

(4) ot 405 <|TI?+ 03, o%+o-§<||T||2+a%7 o5 + o3 <|ITI” +of,

1
() o1 = \/I—IIITII o3 > \FIITII o3 > \FHTII
Figure 1 shows four typical shapes of the set {(0%,03,03) : 01, 02, o3 satisfy
(4)—(5)} (without loss of generality, we assumed that I < I < I3).
One can easily verify that if o1, o2 and o3 satisty (4)—(5) for Iy = I = I3 = 2
and | T|| = 1, then o1, 02, and o3 are the largest ML singular values of the 2 x 2 x 2
tensor 7 with mode-1 matrix unfolding

Voltoifoi—1 0 0 V1tof—oi—o}
_ _ V2 V2
Ty = [T2 T2 = 0 VITol o7 o /1o o7 o3 0
V2 V2
The proof of the following result relies on a similar explicit construction of an I; x
I> x I3 tensor T.

THEOREM 1.2. Let I} < Iy < I3 and 01, 02, 03 satisfy (4) and the following three
inequalities:

1
(6) oy > ﬁIITIL
(7) (I, — I)o? + (I Iy — L)o3 + (1 — L)||T||> > 0,
(8) (I — I)o? + (I I, — L)o2 + (1 — IL)||T]]? > 0.

Then there exists an Iy x Iy x I3 tensor T such that
1. all entries of T are nonnegative;
2. T is all-orthogonal;
3. the largest ML singular values of T are equal to o1, o2, and o3.

Conditions (5) and (6)-(8) mean that the point (0%, 0%,03) belongs to the
trihedral angles SX1Y1Z; and S;X5Y575, respectively, where Sy has coordinates
( 111 , 1117 ' ). The gap between the necessary conditions in Theorem 1.1 and the suffi-
cient condltlons in Theorem 1.2, i.e., the set

9)  {(0},03,02): (4)-(5) hold and at least one of (6)—(8) does not hold},

is shown in Figure 2(c). One can easily verify that the gap is empty only for I; =
I, =1I;.

COROLLARY 1.3. Let 01, 02, and o3 satisfy (4)~(5) for L = I, = I3 =1 > 2.
Then there exists an I x I X I tensor T such that
1. all entries of T are nonnegative;
2. T is all-orthogonal;
3. the largest ML singular values of T are equal to o1, 02, and os.

Thus, the conditions in Theorem 1.1 are not only necessary but also sufficient for
01, 02, and o3 to be feasible largest ML singular values of a cubic third-order tensor.
Figure 1(d) shows the set of feasible triplets (07, 05,03) of an I x I x I tensor.
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F1a. 1. The typical shapes of the set {(0%,02,02) : o1, 02, o3 satisfy (4)—(5)} for Iy < I < I3
(drawn for I = 2, In = 3, I3 = 5, and ||T|| = 1). Plot (a) is the case where all dimensions of a
i

tensor are distinct. The points S, X1, Xo, Y1, Yo, Z1, Z2, and N have coordinates (%, i, E)’

-+t ) Ui ) (g ) o L) (7o L= g (s 70 ), and
(1,1,1), respectively. Plots (b)—(c) are the cases where a tensor has ezactly two equal dimensions,
the points Z1 and Za were merged into one point Z, and the points X1 and X2 were merged into
one point X. Plot (d) is the case where all three dimensions of a tensor are equal to each other,
Iy = I = Is = I. In this case, the pomts Y1 and Ys were merged into one point Y, so S, X, Y, and
Z have the coordinates (I7 }, I) 1,3 5 I (},17 }) and (I7 1,1), respectively. By Corollary 1.3,
any point ( 0'1,0'% 03 of the polyhedron SXYZN in plot (d) is feasible, i.e., there exists a norm-1
tensor T € CIXIXI whose squared largest ML smgular values are 0’%, 0’%, and 03 The volume of

SXYZN equals half of the volume of the cube, i.e., (1 - 7)3

We do not have a complete view on the feasibility of points in (9) In section 3
we obtain particular results on the (non)fea51b111ty of the points S(+ o 12 , 13) X1(1-

++ .15 7), and Yi(4,1 = + + £, &), Namely, we show that if I; < I and
I3 = 115 — 1, then the pomt S i 1s not feasible, and if I3 = I 15, then the point S is
feasible but the points X; and Y; not.

It worth mentioning a link with scaled all-orthonormal tensors introduced recently
in [5]. Tensor 7 € Ch>xIn is scaled all-orthonormal [5, Definition 2] if at least

N —1 of the N matrices T(l) (1) 7T(N)T5V) are multiples of the identity matrix.

It is clear that if the largest mode-n singular value of a norm-1 tensor is then

\/77
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(c) the set in (9)

F1G. 2. Gap between the necessary conditions in Theorem 1.1 and the sufficient conditions in
Theorem 1.2 for I < Iy < I3 (drawn for I = 2, In = 5, I3 = 7, and ||T|| = 1). The point S2
has coordinates (111’ I 11) The set in plot (c) is the difference of the set in plot (a) and the set
in plot (b).

all mode-n singular values are also f Thus, feasibility of a point belonging to the

segment SX; (resp., SY; or SZ1) is equivalent to the existence of a norm-1 I; x Iy x I3
tensor 7 such that

1 1
—Ijz,T(g,)Tg) =1

T TH = ,
212 I I I

1 1 1 1
H H H H
(resp., T(I)T(l) = Tl I]17T(3)T(3) = 73 I[3 or T(l)T(l) = Tl III’T(Q)T(Z) = 72 112) s

i.e., to the existence of a scaled all-orthonormal tensor 7.
The following results generalize Theorem 1.1 and Corollary 1.3 for Nth-order
tensors.

THEOREM 1.4. Let o01,...,0n denote the largest ML singular values of an
I x -+« x Iy tensor T. Then

(10) J%—l—---—l-ai,l—i—oflﬂ—i—-“—i-ajzv§(N—2)||7'||2+0721, n=1,...,N,
1 1

11 TIN>0o1>—=|T|,...,|T|| = on > —|T]|

(11) |71 > o1 \/IT” | 7] \/EH I
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THEOREM 1.5. Let oq,...,on satisfy (10)-(11) for Iy = ---=Iny =1 > 2. Then
there exists an I x --- x I tensor T such that
1. all entries of T are nonnegative;
2. T is all-orthogonal;
3. the largest ML singular values of T are equal to o1,...,0nN.

Thus, the conditions in Theorem 1.4 are not only necessary but also sufficient for
01,...,0n to be feasible largest ML singular values of an I x --- x I tensor. This
result was independently proved for real 2 x --- x 2 tensors in [15].

Theorems 1.1, 1.2, 1.4, and 1.5 are proved in section 2.

It is natural to ask what happens if some inequalities in (4) are replaced by
equalities. Obviously, the three equalities in (4) hold if and only if 01 = 02 = 05 =
|| 71|, implying that Ty, T2y, and T sy are rank-1 matrices. Hence all the remaining
ML singular values of T are zero. Similarly, the two equalities 0% + 03 = ||T||? + o3
and of + 02 = ||T||? + 02 are equivalent to o1 = ||T| and o2 = o3, implying that
rank(T(;)) = 1 and rank(T(y)) = rank(T(3)) =: L, i.e., T is an ML rank-(1,L, L)
tensor, where L < min(/ls,I3). It is clear that in this case the remaining nonzero
mode-2 and mode-3 singular values of 7 also coincide and may take any positive
values whose squares sum up to ||7|? — 3. In section 4 we characterize the tensors T
for which the single equality 0% +03 = ||T||*+ 02 holds. We show that T is necessarily
equal to a sum of ML rank-(Lq,1, L) and ML rank-(1, Lo, L) tensors and we give a
complete description of all its ML singular values. The description relies on a problem
posed by Weyl in 1912: given the eigenvalues of two nxn Hermitian matrices A and B,
what are all the possible eigenvalues of A +B? The following answer was conjectured
by Horn in 1962 [8] and has been proved through the development of the theory of
honeycombs in [9, 10] (see also [1, 11]). Let

Ai(+) denote the ith largest eigenvalue of a Hermitian matrix.
If
(12) o =XN(A),  Bi=NB), y=NA+B),
then «;, B;, and ~; satisfy the trivial equality
(13) Nt F =t Fan P+t B

and the list of linear inequalities

(14) o<+ 8, (LK) eTr, 1<r<n-1,

keK iel jeJ

where I = {i1,...,ir}, J = {j1,---,jdr}, K = {k1,...,k.} are subsets of {1,...,n}
and T denotes a particular finite set of triplets (I, .J, K). (The construction of T
is given in Appendix A.) The inverse statement also holds: if «;, 3;, and ~; satisfy
(13) and (14), then there exist n x n Hermitian matrices A, B, and C such that (12)
holds.

We have the following results.

THEOREM 1.6. Let 02403 = ||T||*+03. Then T is a sum of ML rank-(Ly,1, Ly)
and ML rank-(1, Lo, L) tensors, where Ly < min(Iy,I3) and Ly < min(lz — 1, I3).
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THEOREM 1.7. Let 0% 4+ 03 = ||T||?> + 03. Then the values

o1 =011 =012 2> 201y, >0,
09 = 091 > 092 > -+ > 021, > 0,
03 =031 > 032 > -+ > 031, > 0,

are the mode-1, mode-2, and mode-3 singular values of an Iy x Iy x I3 tensor T,
respectively, if and only if
oty + ol =05+t 0dy, = 0gy o o, = (TP
01, =0 fO?" 7> min([l,Ig),
o9; =0 for i > min(Iy, I3),

and (13) and (14) hold for

_Jotip1s, i <min(f, ), ~Jodi, i<min(ly,I5),
(15) o = Bi = i, = 03,
l 0 otherwise, ’ 0 otherwise, ! 3i+1>
andn = I3 —1.

Ezample 1.8. If n = 2, then T? = {(i,j,k) : k =i+ j— 1,1 < i, j,k <2} =
{(1,1,1),(1,2,2),(2,1,2)} (see Appendix A). By Horn’s conjecture, the equality 1 +
Yo = a1 + ay + (1 + B2 together with the inequalities (also known as the Weyl
inequalities)

(16) v < ar + B, Y2 < ag + Ba, Yo <o+ B

characterize the values a1, as, 01, B2, 71,72 that can be eigenvalues of 2 x 2 Hermitian
matrices A, B, and A + B. Let 0}, + 03, = ||T||*> + 03,. From Theorem 1.7 and
(16) it follows that the values 011 Z 012 Z 013 Z 0, 021 Z 022 Z 023 Z O, and
031 > 032 > 033 > 0 are the mode-1, mode-2, and mode-3 singular values, respectively,
of a 3 x 3 x 3 tensor T if and only if

2 2 2 _ 9 2 2 _ 2 2 2 _ 2
011+ O1p + 013 = 031 + 05 + 033 = 031 + 035 + 033 = || T,
2 2 2 2 2 2 2 2 2
039 < 079 + 059, 033 < 019 + 033, 033 < 013 + 03.

Horn’s conjecture has recently also been linked to singular values of matrix unfoldings
in the tensor train format [13].

2. Proofs of Theorems 1.1, 1.2, 1.4, and 1.5. The following lemma will be
used in the proof of Theorem 1.1.

LEMMA 2.1. Let H = (Hij)fszl € ClshxIshi pe q positive semidefinite matriz
consisting of the blocks H;; € C1'*11. Then

(17) /\maaj(Hll +---+ HIgIg) + )\maw(H) < tI‘(H) + Amaw(q’(H))v

where ®(H) denotes the I3 x I3 matriz with the entries (®(H)),; = tr(H;;) and
Amaz(+) denotes the largest eigenvalue of a matriz.

Proof. To get an idea of the proof we refer the reader to the mathoverflow page
(http://mathoverflow.net/questions/248975/) where the case I3 = 2 was discussed.
Here we present a formal proof for I3 > 2. Let H = Zle w,wi

-7, where w, are

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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orthogonal and w, = [w{, ... wi ] with wy, € C/s. First, we rewrite (17) in

terms of wy,, 1 <k < I3, 1 <r < R. Without loss of generality, we can assume that
||w1]] = max ||w,||. Hence,
T

(18) A'rnaw(H - HVVIH2 Z ||Wk1H2
It is clear that
H;; = > wiwi, 1<i,j<Is.

Hence

I3 I3 R

(19) )\muw(Hll 4+ 4 HISIS) = Hm”a}l (Hkkxa X) = max Z Z ‘(Wkra X)|2~

Since H = -7 | w,w# it follows that

R
(20) r(H) = [lw,*.

Since
R R
T
®(H);; = tr(H;;) = tr E www E W W = E Wi, Wi,
r=1 r=1
it follows that
T xr* T %
R erwlr WlTWI:;T
r=1 T * T *
| WirWir -0 Wi, Wi,
(21) -
w?
R 1r R
_ . * * o T * ¢
- Z : |:W1T W[g,'r] - Zwr Wra
r=1 T r=1
(Wi
where
Iy x I
W, = [wy, ... wp,,] € C*53,

Now we prove (17). By (18), (19), the Cauchy inequality, and (20),

(22)
)\mam(H) + )\mam(Hll +... HI3I3)
I3

R
= HW1||2 + HHIH Xl l2| Wk17 ZZ Wk'm ]

k=1r=2

I R I3
< HW1||2 + max1 lg |(W;€17x)|2 + E er||2 =tr(H) + HmHax1 lg |(Wk1,X)|2‘| .
X||= X||l=
k= r=2 k=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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To complete the proof of (17) we should show that
I3
max [Z |<wk1,x>2] < Aax (B (H)).
7 Lk=1

This can be done as follows:

13 IS
(23) max [Z(wkl,x)F] = max leHwklw,ﬁx] = Amaz (W1W{)
k=1

Ixl=1 | = xl=1

R
= Anaz (W{JWI) < Anag (Z W»{{Wr>
= Anaz(P(H)™) = Apaa (P(H)). ]

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The three inequalities in (5) are obvious. We prove that
0% + 0% < ||T||?> + 03. The proofs of the inequalities o} + 03 < ||T||* + 03 and
03 4+ 03 <||T||? + 02 can be obtained in a similar way.

By definition of ML singular values,

U% = )\maw(T(l)T(I—{)) = A'rnaa:(r:[‘lr]:‘i{—l + -4 T[STg),
U% = )\maw(Tg)T(Z)) = )\mam(T@)T?Q)) = )\maa:(H)a
where

™. T ... T,T{
_mT * .
H= T(2)T(2) - : :

T,T! ... T,TY

Since vec(T;)™ (vee(T;)")# = tr(T;TH), it follows that
2 = N (T3 TH)) = Ay (B(E))
03 max (3)+(3) max )

where

tr (TyT) ... tr(T.TH)
®(H) = : . :
tr (T, Tf) ... tr (T, TH)

Since ||T]? = tr(H), the inequality 0% + 03 < ||T||? + 0% is equivalent to

>\maz (TIT{{ + -+ Tlng) + )\maz(H) < tI’(H) + )\max((I)(H))v

which holds by Lemma 2.1. ]

Proof of Theorem 1.2. The proof consists of three steps. In the first step we
construct all-orthogonal and nonnegative I; x Is x I3 tensors Sy, Ao, Vo, Zo, and

N whose squared largest ML singular values are the coordinates of Sg(%, %, Iil),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Xo(1, 4, )y Yo, 1, 1), Za(4, £, 1), and N(1,1,1), respectively (see Figure 2(b)).
Then we show that because of the zero patterns of Sy, Xz, Vo, Z2, and N, the tensor

1
(24) T = (t52822 +tX2X22 +ty2y22 +tZ2222 +tNN2)2

is all-orthogonal for any nonnegative values ts,, tx,, tv,, tz,, tn. The superscripts
“2” and “%” in (24) denote the entrywise operations. Finally, in the third step, we
find nonnegative values tg,, tx,, tv,, tz,, tn such that 7T is a norm-1 tensor whose
squared largest ML singular values are equal to o7, 03, and o3.

Step 1. Let w denote the cyclic permutation7:1 -1 -1 —1—--- =2 — 1.
The tensors Sy, Aa, Vs, and Z, are defined by

1
— ifj=aF"14)and 1 <i,k < Iy,

Soijk =
0  otherwise,
1
— ifj=7F"1G), i=1, and 1 <k < I,
vag
Xaijk = L ifi=1land [ < j=k < Iy,
VI
0 otherwise,
1
— ifj=7F106), j=1, and 1 <k < I,
Voijk = v
0 otherwise,
1
— ifj=7F"1G), k=1, and 1 <i < I,
294k = I

"5

otherwise,

and the tensor N, by definition, has only one nonzero entry, N71; = 1. For instance,
if I} = I, = I3 = 2, then the first matrix unfoldings of Ss, X2, Vo, Z2, and N have
the form

NN

g _lftoo1] o 1[1000
27500 1 1 o> MW7 5100 1 0 0

v, _L[rooo 100 1] o 1000
2O =500 0 1 oW T 500 0 0 02 W0 00 0]

Step 2. 1t is clear that the (i, j, k)th entry of a linear combination of S3, X3, V3,
Z2, and N2 may be nonzero only if

j=a*"1lG@) and 1 <i, k<1, or i=land I, <j=k<I.

The same is also true for 7 defined in (24). One can easily check that each column
of T(y), T(2), and T (3) contains at most one nonzero entry, implying that 7 is all-
orthogonal tensor.

Step 3. From the construction of the all-orthogonal tensors S, X5, Vo, Z5, and
N it follows that their largest ML singular values are equal to the Frobenius norms
of the first rows of their matrix unfoldings. Thus, the same property should also hold
for 7 whenever the values tg,, tx,, ty,, tz,, and ty are nonnegative. Now the result
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follows from the fact that the polyhedron in Figure 2(b) is the convex hull of the
points Sa2, Xa, Ya, Zs, and N. We can also write the values of tg,, tx,, tv,, tz,, and
tn explicitly. We set

f(o},03,03) := (I, Iy + I, — 2I1)o} + (I} — 1) Iy03 + (I; — 1) 12035 + (2 — [, I, — ).

If (63,03%,03%) belongs to the tetrahedron XoY2 725N, i.e., f(0?,03,02) > 0, then

I I

tx, = m(lﬂﬁ — 03 —03), by, = m(l +o3 -0l —03),
I

lz, = m@*'ag — o —03),

02,02,02
tn=1—tx, —ty, —tz, = 2({1(11)(212 3)1), ts, = 0.

If (02,03,02) belongs to the tetrahedron X2Y2Z593, i.e., f(0%,05,03) <0, then

I , 1
th - <Ul - >,
I —1 I,
I , 1 (L—INL [, 1
ty, = _ e )b _
L <02 11> T Eo)L \ T )
o , 1 (L—INL [, 1
tZ211—1<0311>+(112—1)12 L)

ts, =1—tx, —ty, —tz, = , ty = 0. ]

Proof of Theorem 1.4. The inequalities in (11) are obvious. We prove that
(25) of + -+ oky S (N =2)TIP + o}

The proofs of the remaining N — 1 inequalities in (10) can be obtained in a similar
way.

The proof of (25) consists of two steps. In the first step we reshape T into third-
order tensors 71, ... 7IW=21 and compute their matrix unfoldings. In this step we
will make use of (1) for N = 3. For the reader’s convenience and for future reference
here we write a third-order version of (1) explicitly: if X € CI*/*X then for all
values of indices i, j, and k

the (4,7 + (k — 1)J)th entry of X(;y = the (j,i + (k — 1)I)th entry of Xy,

(26)
=the (k,i+ (j — 1)I)th entry of X3y = the (i, j, k)th entry of X
In the second step, we apply the first inequality in (4) to each tensor Tl then we sum
up the obtained inequalities and show that the result coincides with inequality (25).
Step 1. Let n € {1,..., N —2}. A third-order tensor 71" € ClrInxInt1xInyz-In
is constructed as follows:

n k—1 N k—1
the <i1 +Y (k=) [[ Loinsriinez + > (=1 [] Il>th entry of 71"
k=2 =1 k=n-+3 l=n+2

is equal to the (i1,...,ix)th entry of 7.
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Now we apply (26) for X = 71 and

n k—1 N k—1
i=i+Y (=D ][ 0 =insr, E=ine2t+ Y (-1 [ L.
k=2 =1

k=n-+3 l=n+2

After simple algebraic manipulations, we obtain that

k—1
the (zl + Z (ix — 1) H I ipy1 + Z (ip — 1) H Il>th entry of T(l)

k=n-+2 l=n+1

N k—1
=the [ip41,1+ Z (ip — 1) H I; |th entry of TEz])

k=2 I=1#n+1
k:;énJrl #

k—1 n+1 k—1
— the <2n+2 + Z i —1) H I, i1 + Z ir—1) H Il>th entry of TE?’])

k=n+3 l=n-+2 k=2 =1
(27) = the (i1,...,in)th entry of T.

Step 2. From (27) and (1) it follows that

1
(28) T(1) =T,
(29) T() =Ty, 1<n<N-2
IN-2] _
(30) T = =Tw).

Comparing the expressions of TET{]) and TEE]) in (27), we obtain that

T
(31) T@:(ﬂﬁﬂ , 1<n<N-3.

By Theorem 1.1, for every n € {1,..., N — 2}
(82) 0as (T11)) + 0a (Tla)) S UTI 4 02y (TU3)) = 1712 + 02 (T -

where 0,44 (+) denotes the largest singular value of a matrix. Substituting (28)—(31)
into (32) we obtain

(3) (€]
Omar (T()) + 08 S ITI? + 0tna (T()) = IT17 + e (T(])) - m=2,

ot + 03 < IITI + Oas (Tl3) = ITI + hnae (T ) = 1,

e (1059) 0 < 7150 (79) = 7130 (302 = 5
o (T2 + Ry < ITI 4 e () = TP+ 03 m = N =2

Summing up the above inequalities and canceling identical terms on the left- and
right-hand sides we obtain (25). d
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Proof of Theorem 1.5. It can be checked that a polyhedron described by the in-
equalities in (10)—(11) is a convex hull of 2V — N points,

1 1
(33) V= {(al, c.QaN), Qn € {I’ 1} and at least two of a-s are equal to I} )

To show that each point of the polyhedron is feasible we proceed as in the proof of
Theorem 1.2.
First, for each (a1,...,an) € V we construct an all-orthogonal and nonnegative
I x---x I tensor PN whose squared largest ML singular values are aq, ..., ayN.
Let 7w denote the cyclic permutation 7 :1 -1 -1 —-1— --- = 2 — 1. The
tensor P11 is defined by

N—-1 . .
11 {Iz if i = it FiN=N+2(4,)

0 otherwise,

and the tensor P!, by definition, has only one nonzero entry, Pi=-!; = 1. Let
(oq,...,an) € VA{(},...,7),(1,...,1)} and ji,..., i denote all indices such that

aj, = -+ = ay, = 1. Then the tensor P~~~ is defined by
No1-k L i — ) ; )
aray  JITT 2 if ip = wia T TIN=NF2(30) and ij, = - = ij, = 1,
ot 0 otherwise.

For instance, if N = 4 and I = 2, then the first matrix unfolding of P17 is given by

P%""’%—L 10010110
1) S 2y/2[0 1 1010 01

and the first matrix unfoldings of the remaining tensors P“*»»*N can be obtained
11
from 73(11) T by rescaling and introducing more zeros.

It is clear that the (i1,...,7x)th entry of a linear combination of 7?%7""%, ey
Pl may be nonzero only if

Qg = 7Ti3+-~~+iNfN+2(Z‘1).

The same is also true for 7 defined by

2
— E Q1 yeney UN
T_ tO‘lww,OCNP b ’

(041 ----- llN)GV

where, as before, the superscripts “2” and “%” denote the entrywise operations. One
can easily check that each column of T(y),...,T(y) contains at most one nonzero
entry, implying that 7 is all-orthogonal tensor. Finally, from the construction of the
all-orthogonal tensors PN it follows that their largest ML singular values are
equal to the Frobenius norms of the first rows of their matrix unfoldings. Thus, the
same property should also hold for 7 whenever the values ¢, .. o, are nonnegative.
Now the result follows from the fact that the polyhedron described by the inequalities

in (10)—(11) is a convex hull of points in V. o
Note that in the proof of Theorem 1.5 the constructed tensor 7 has squared
singular values in the nth mode equal to 02, 725 (1 — 02),..., 25 (1 — 02), ie., the

I — 1 smallest singular values in the nth mode are equal.
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3. Results on feasibility and nonfeasibility of the points S, X, and Y;.
Throughout this subsection we assume that 7 is a norm-1 tensor.
In the following example we show that it may happen that S is the only feasible
1

point in the plane through the points S, X1, and Y3, i.e., the plane 02 = -

Example 3.1. Let I3 = I1I; and T € Cl*f2XIs Assume that o2 = i Then
T(Hg)T(g) = illg. Since T (3) is a square matrix, it follows that T(3) is a scalar
multiple of a unitary matrix, T3y = ﬁU. One can easily verify (see [5, p. 65])
that Tg)T(l) = %II1 and Tg)T(Q) = iIIT Hence, 07 = % and 03 = i Thus, the
points X; and Y7 are not feasible.

From Example 3.1 it follows that the point S is feasible if I; = 2, I = 3, and
I3 = 6. The point S is also feasible if I1 = 2, I = 3, and I3 = 4. Indeed, let 7 be an
2 x 3 x 4 tensor with mode-3 matrix unfolding

1++3 0 0 1—v3 =2
T(B)ZL 0 1+vV3 1-V3 0 0
23 0 1-vV3 143 0 0
1—3 0 0 1+v3 -2

S NN O

Then one can also easily verify that T(l)Tg) = %IQ, T(Q)Tg) = %13, and T(3)Tg) =
%14. The following result implies that in the “intermediate” case Iy = 2, I = 3, and
I3 =5 the point S is not feasible.

THEOREM 3.2. Let Is = [1I, — 1, T € ChvxlaxIs  gpg T(B)Tg) = iIIS. Then
the following statements hold:
(i) f TyT{y = 1 1n, then I < Iy;
(i) i T2)T{hy = 1;1n, then I < I;
(iii) if the point S is feasible, then Iy = I5.
Proof.
i) Let T3y = [t1 ... tr,1,]. Then the identity T(1\TH, = 11, is equivalent to
(3) 112 O+ =~ Lt
the system
tgtb + tg+i1t11+i2 et tg(12—1)+i1t11(12—1)+1'2 =0,
(34) ) ) , 1 o
[t 17+ Mtrva 7+ + Ibn -1y +0 I = i 1<iy <ip <1

Since T(3)Tg) = 1, the matrix I3T(5) € C**12 can be extended to a

unitary matrix /I3[~ ] € Chl2xhil2 where a € CI2 is a vector such that

Tza* =0 and ||a]]* = i Hence,

1T 1
[Tg) a :| |:a(72)):| = 7311213
or

1
(35) tHt; +aa; =0 fori#j and HtiH2+|ai|2:I—, 1<i<j<hlb.
3
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From (34)—(35) it follows that

iy Qiy + AL 44, QL +ip T+ CiIl(Iz*l)JrilCL11(12*1)Jri2 =0,

1
2 2 2 . .
|a‘i1| + |a11+i1| et |a11(12—1)+i1| = 71’ 1<4; <ig < 14
Thus, the vectors
T I .
lai ar,4i - ap(1,—1)44) € C?2, 1<4< I,

are nonzero and mutually orthogonal. Hence, I; < I5.

(ii) The proof is similar to the proof of (i).

(iii) Since S is feasible, it follows that T(l)Tg) = %II1 and T(Q)Tg) = 1—12112.
Hence, by (i) and (ii), Iy = Is. |

4. The case of at least one equality in (4). The following two lemmas will
be used in the proof of Theorem 1.7.

LEMMA 4.1. Let H and ®(H) be as in Lemma 2.1. Then the equality in (17)
holds if and only if H can be factorized as
(36) H = [vec(W;) G @ x|[vec(W;) G @ x|,

where
(i) Wy € Chv*Is gnd x is a principal eigenvector of Wi W1 i.e.,

W1W{{X = )\mam(wlw{{)xa ||X|| =1

(ii) the matriz G = [ga ... ggr] € CB*F=1) has orthogonal columns;
(i) GTWHx = 0;
(iv) Amaz(WHEW) = Ao (WEW, + G*GT).

Moreover, if (36) and (i)-(iv) hold, then

(37) o (Z Hkk> =0 (WiW{ +||G|*xx"),

k=1
(38) o (H) = {|[Wi], llgz]l* ... lgrl,0,...,0},
(39) o (®H)) =0 (W{W; +G*G"),

where o(-) denotes the spectrum of a matriz.

Proof. The proof essentially relies on the proof of Lemma 2.1 so we use the same
notation and conventions as in the proof of Lemma 2.1.
Derivation of (37)~(39). Assume that 36 and (i)—(iv) hold. Then

R
H-= Zvec(Wr) vec(W,) where W, = xg? for r=2,...,R.
r=1

Hence

Is R R
Z Hy, = Zwrwf =W, Wi + Zngg:XH =W W +[|G[*xx",
k=1 r=1 r=2
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which implies (37). By (ii), (iii), and the convention ||z|| = 1 in (i), the vectors
vec(W,.) are mutually orthogonal, which implies (38). Finally, by (21),

R R
®(H) = ZW;FW: =W/ W+ ZgrxTx*gfl =WIW; + GG,
r=1 r=1
which implies (39).
Sufficiency. By (i) and (37),

I3
)‘max (Z Hkk) = )‘max (W1W{I) + HG||2
k=1

By (iv) and (ii),

||VVl||2 2 Am,(m? (Wfle) Z )\mam (G*GT) = 2I§nra§XR ||gr||2

Thus, by (38), Apar(H) = [[W1 ]2 and tr(H) = [W; [ + |G| By (iv) and (39),
Amaz(®(H)) = Anae (WH W), Thus, the left- and right-hand sides of (17) are equal
€0 A (W1 W) 4 [W1 2 + G2,
Necessity. It is clear that the equality in (17) holds if and only if it holds in (22)
and (23). So we replace the inequality signs in (22) and (23) with an equality sign.
From the first line of (23) it follows that x satisfies (i). By the Cauchy inequality,
the equality

Is R R

S I wrrnx)P =D [we|f?

k=1r=2 r=2
in (22) would imply that

Wiy = CkrX, k=1,....1s, r=2,...,R,
for some cg,. € C. Hence,
T

40)  wy=[wh ... wh] =lew ... ) @x=g 9x, r=2,...,R 0O

Since H = Zfil w,wH it follows that
H=[w;, ... wg][w1 ... wg]T =[w1 229%x ... gr@x|[W1 229%x ... gr®@x]7,

which coincides with (36). The mutual orthogonality of wa, ..., wg and the orthogo-
nality of wy to wa, ..., wg imply (ii) and (iii), respectively. By (40), W, = xgT for
r = 2,...,R. Hence, the equality

R
)\mam (W{_le) = )\mam (Z W7I:IWT>

r=1

in (23) would imply (iv):

R
Amaz (WHIWL) = \as (W{f Wi+> g::xngTT> = Anaz (W Wy + G*GT).

r=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/01/17 to 134.58.253.56. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1450

I. DOMANOV, A. STEGEMAN, AND L. DE LATHAUWER

LEMMA 4.2.

(i) Let W1, G, and x satisfy conditions (i)~(iv) of Lemma 4.1, H be defined as

in (36), and L = Anax(WHW1). Then there exist (I3 —1) x (I3 — 1) positive
semidefinite matrices A and B such that

(41) rank(A) < min(lq,I3) — 1, rank(B) = R — 1, L > Anaz(A +B)

and

I3
(42) o[ Y Hp | = L+tx(B),Ai(A), ., Amin(ry,1)-1(A),0,...,0 5,
k=1 i

I —1I3

(43) o(H) = { L+ tr(A), \(B),...,\g_1(B),0,...,0 5,
(44) o (®(H)) = {L}Uo (A +B).

(ii) Let a positive value L and (Is — 1) x (Is — 1) positive semidefinite matrices

A and B satisfy (41). Then there exists a matriz H of form (36) such that
(42)-(44) hold.

Proof.

(i) Let p be a principal eigenvector of Wi W¥ ie, WHIW p = Lp, |p| = 1.

Then, by (iv), G*GTp = 0. Let U, be an I3 x I3 unitary matrix whose first
column is p. Then

Hxr H _|L 0 HexnTyr (000
(45) Uﬂwmm_kA, UGG, = | pl-

where A and B are (I5 — 1) x (I3 — 1) positive semidefinite matrices. It is
clear that

(46) Me(A) =Nt (WEWY), k=1, I3 —1,

2 k=1,....R—-1
47 A B :A G*GT — ||gk‘+1|| Y bl b b)
(47) #(B) = Al ) {a k=R,... Is—1.

Now, (43) follows from (38) and (45) and (44) follows from (39) and (45). To
prove (42) we rewrite (37) as

I3
(48) [ (Z Hkk) = {>‘max (W1W{I)

k=1
FIGI? A2 (WiWT) A, (WiW) ]

Since the nonzero eigenvalues of W1 W coincide with those of W W, and
|G||? = tr(B) it follows that (48) is equivalent to (42).

(ii) Let H be defined as in (36), where

VL 0

W, = — G =US: =[10...0T
1 |:0 Wlila ) X [ ]a
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W), is an (I; — 1) x (Is — 1) matrix such that W{iwl = A, and USU¥ is

the reduced SVD of [§ 3]. One can easily verify that conditions (i)-(iv) in
Lemma 4.1 hold. Hence, by Lemma 4.1, (37)—(39) also hold. Substituting

Wi, G, and x in (37)—(39) we obtain (42)—(44). |

Proof of Theorem 1.6. Let H = T@)TE). Since 0% + 02 = || T||? + 03, it follows
that equality (17) holds. Hence, by Lemma 4.1, H can be factorized as in (36).
Therefore, there exists an Iy X R matrix V whose columns are orthonormal and such

that T(Tz) = [vec(W;) G @ x|V or equivalently,

Ty = [Wik X[gk1 ... gkr)]]VY, k=1,..., 1.

Let W and G denote the I; x I X I tensors whose kth frontal slice is [w1; O ... O]VH
and [0 x[gr1 ... grgr]]VT, respectively. It is clear that 7 = W + G, W is an ML
rank-(L1, 1, L1) tensor, and G is ML rank-(1, Lo, L) tensors, where L; < min(1q, I3)
and Lo < min(ly — 1, I3). |

Proof of Theorem 1.7. Let H = T@)T&). Then

I3

(49) o} >0l >~ >0%, >0 are the eigenvalues of Z H,, = T(l)Tg),
i=1

(50) 03, > 05y > > 0312 >0  are the first I, eigenvalues of H,

(51) 03, >03,>--->03, >0 are the eigenvalues of ®(H) = T(g)Tg).

Necessity. By Lemmas 4.1 and 4.2(i), there exist (I3 — 1) x (Is — 1) posi-
tive semidefinite matrices A and B such that (41)—(44) hold. Thus, by (15) and
(49)—(51), the values «;, (;, and ~; are eigenvalues of A, B, and A + B, respectively.
Hence, by Horn’s conjecture, (13) and (14) hold.

Sufficiency. Since (13) and (14) hold, from Horn’s conjecture it follows that there
exist (I5—1) x (I3 —1) positive semidefinite matrices A and B such that «;, 3;, and v;
are eigenvalues of A, B, and A+B, respectively. Hence, by Lemma 4.2(ii), there exists
a matrix H of form (36) such that (42)—(44) hold. By (15) and (43), rank H < 14+ R <
I>. Let V be an I, x R matrix whose columns are orthonormal and let 7 denote an
I x I x I tensor with mode-2 matrix unfolding T (o) = V*[vec(W1) G @x]”. Then,

H= T(TQ)TZ‘Q). The proof now follows from (49)—(51). 0

5. Conclusion. In the paper we studied geometrical properties of the set

— 2 2 2 2 2 2.
X 00 = {(011, ey 010915051,y 0515 e ,03]3) :
onk is the kth largest mode-n singular value of an Iy x I X I3 norm-1 tensor 7},

where for each n = 1,2, 3 the values o, are sorted in descending order.

Let 7 denote a projection of RI1+2+% onto the first, (I; +1)th, and (I; +12+1)th
coordinates. We have shown that there exist two convex polyhedrons of positive
volume such that the set 7(Xy, 1,.7,) C R? contains one polyhedron (Theorem 1.2)
and is contained in another (Theorem 1.1). We have also shown that both polyhedrons
coincide for cubic tensors, i.e., for Iy = Iy = I3 (Corollary 1.3), and can be different
in the noncubic case (Example 3.1 and Theorem 3.2).

In Theorem 1.7, we considered the case where the largest ML singular values of
T satisfy the equality

2 2 2 2 2 2 2 2 2
o1 + 051 =1+ 035 or o1y + 035 =1+ 05 or oy + 03 =1+07;
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and described the preimage 7' (X1, 1,.1,). The description implies that 7= (21, 1,.1,)
is a convex polyhedron. This seems to indicate that the whole set Xr, 1, 1, is also a
convex polyhedron. As the description of 771(3, 1, 1,) relies on a problem concerning
the eigenvalues of the sum of two Hermitian matrices that has long been standing,
the complete description of ¥, 1, 7, could be an even harder problem.

We have also proved a higher-order generalizations of Theorem 1.1 (Theorem 1.4)
and Corollary 1.3 (Theorem 1.5).

Appendix A. Definition of T*. In our presentation we follow [1, p. 302].

The set T of triplets (I, J, K) of cardinality r can be described by induction on
r as follows.

Let us write I = {i; < iy < -+ < i,} and likewise for J and K. Then for r = 1,
(I,J,K)isin Ty if ky =41 +j1 — 1. Forr > 1, (I, J, K) is in T, if

Sit> i= Zk+@

i€l jeJ keK

and, for all 1 <p <r —1and all (U,V,W) € T},

S it Y e = ka+p7(p2+l).

uclU veV weW

Thus, T} is defined recursively in terms of 17,..., T ;.

Acknowledgment. The authors express their gratitude to the mathoverflow.net
user with nickname @fedja for help in proving Lemma 2.1.
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